lunes, 25 de septiembre de 2017

SEMANA # 24

ISÓMERIA ÓPTICA


Existen moléculas que coinciden en todas sus propiedades excepto en su capacidad de desviar el plano de luz polarizada. Son los llamados isómeros ópticos. Uno de ellos desvía la luz hacia la derecha, y se designa (+), o dextrógiro, mientas que el otro la desvía en igual magnitud pero hacia la izquierda, y se designa (-) o levógiro.
Su comportamiento frente a la luz polarizada se debe a que la molécula carece de plano de simetría, y por lo tanto se pueden distinguir dos isómeros que son cada uno la imagen especular del otro, como la mano derecha lo es de la izquierda. Ambas manos no son iguales (el guante de una no encaja en la otra), pero son simétricas: la imagen especular de la mano derecha es la mano izquierda. Los isómeros ópticos también se llaman enantiómeros, enantiomorfos o isómeros quirales. El caso más frecuente de ausencia de plano de simetría se debe a que algún carbono tetraédrico está unido a cuatro radicales distintos (Figura de la derecha). Este carbono recibe el nombre de carbono asimétrico



PROYECCIONES DE FISCHER
Proyectar consiste en dibujar en dos dimensiones (plano) una molécula. En la proyección de Fischer la molécula se dibuja en forma de cruz con los sustituyentes con los sustituyentes que van al fondo del plano en la vertical y los grupos que salen hacia nosotros en la horizontal, el punto intersección de ambas líneas representa el carbono proyectado.
La proyección de Fischer puede hacerse para varios carbonos de la molécula. El primer paso consiste en dibujar la molécula eclipsada y en segundo lugar girarla dejando unos grupos hacia nosotros y otros al fondo del papel.




SEMANA # 23

ISOMERÍA CONFORMACIONAL 

En química orgánica, los isómeros conformacionales o confórmeros son estereoisómeros que se caracterizan por poder interconvertirse (modificar su orientación espacial, convirtiéndose en otro isómero de la misma molécula) a temperatura ambiente, por rotación en torno a enlaces simples. Estas conformaciones se denominan: anti, eclipsada o alternada. Son compuestos que, generalmente, no pueden aislarse físicamente, debido a su facilidad de interconversión.
El análisis conformacional es la exploración de todos los confórmeros que se pueden obtener de una molécula dada al realizar torsiones alrededor de enlaces sencillos (grados de libertad conformacionales), observando los cambios en la energía molecular asociados a esas torsiones.

PROYECCIONES DE NEWMAN
La proyección de Newman se obtiene al mirar la molécula a lo largo del eje C-C. El carbono frontal se representa por un punto, del que parten los tres enlaces que lo unen a los sustituyentes. El carbono de atrás se representa por un círculo y los enlaces que salen de este carbono se dibujan a partir de este círculo.

Resultado de imagen para ISOMERÍA CONFORMACIONAL   En química orgánica, los isómeros conformacionales o confórmeros son estereoisómeros que se caracterizan por poder interconvertirse (modificar su orientación espacial, convirtiéndose en otro isómero de la misma molécula) a temperatura ambiente, por rotación en torno a enlaces simples. Estas conformaciones se denominan: anti, eclipsada o alternada. Son compuestos que, generalmente, no pueden aislarse físicamente, debido a su facilidad de interconversión. El análisis conformacional es la exploración de todos los confórmeros que se pueden obtener de una molécula dada al realizar torsiones alrededor de enlaces sencillos (grados de libertad conformacionales), observando los cambios en la energía molecular asociados a esas torsiones.  PROYECCIONES DE NEWMAN La proyección de Newman se obtiene al mirar la molécula a lo largo del eje C-C. El carbono frontal se representa por un punto, del que parten los tres enlaces que lo unen a los sustituyentes. El carbono de atrás se representa por un círculo y los enlaces que salen de este carbono se dibujan a partir de es


Resultado de imagen para ISOMERÍA CONFORMACIONAL   En química orgánica, los isómeros conformacionales o confórmeros son estereoisómeros que se caracterizan por poder interconvertirse (modificar su orientación espacial, convirtiéndose en otro isómero de la misma molécula) a temperatura ambiente, por rotación en torno a enlaces simples. Estas conformaciones se denominan: anti, eclipsada o alternada. Son compuestos que, generalmente, no pueden aislarse físicamente, debido a su facilidad de interconversión. El análisis conformacional es la exploración de todos los confórmeros que se pueden obtener de una molécula dada al realizar torsiones alrededor de enlaces sencillos (grados de libertad conformacionales), observando los cambios en la energía molecular asociados a esas torsiones.  PROYECCIONES DE NEWMAN La proyección de Newman se obtiene al mirar la molécula a lo largo del eje C-C. El carbono frontal se representa por un punto, del que parten los tres enlaces que lo unen a los sustituyentes. El carbono de atrás se representa por un círculo y los enlaces que salen de este carbono se dibujan a partir de es

SEMANA # 22


ISOMERÍA GEOMÉTRICA 

Son estereoisomeros que no pueden convertirse uno en otro sin que se rompa un enlace química, esto se presentan en pares y utilizan los términos Cis y Trans.
Son el tipo específico de diasteromeros que deben su existencia a la rotación impedida en torno del enlace carbono-carbono ( C- C ).
La isomería cis-trans o geométrica es debida a la rotación restringida entorno a un enlace carbono-carbono.
Esta restricción puede ser debida a la presencia de dobles enlaces o ciclos. Así, el 2-buteno puede existir en forma de dos isómeros, llamados cis y trans.




ISÓMEROS CIS:
Significa que dos atomos en particulares son adyacentes que están del mismo lado del doble enlace o en la misma cara.

ISÓMEROS TRANS:

Cuando dos grupos de 2 atomos existen de lado opuesto de la formula estructural.

SEMANA # 21

ISOMERIA
Se llaman isómeros a aquellas moléculas que poseen la misma fórmula molecular pero diferente estructura.

SÓMEROS ESTRUCTURALESI

Los isómeros estructurales difieren en la forma de unir los átomos y a su vez se clasifican en isómeros de cadena, de posición y de función.

ISÓMEROS DE CADENA:
Se distinguen por la diferente estructura de las cadenas carbonadas. Por ejemplo:

ISÓMEROS DE POSICIÓN:
El grupo funcional ocupa una posición diferente en cada isómero. Por ejemplo:


ISÓMEROS DE FUNCIÓN:
El grupo funcional es diferente. El 2-butanol y el dietil éter presentan la misma fórmula molecular, pero pertenecen a familias diferentes -alcohol y éter- por ello se clasifican como isómeros de función.

SEMANA # 20





ESTA SEMANA SE REALIZO LA EVALUACIÓN DE PERIODO